
.

A Constraint-Based Planner for Data Production

Source of Acquisition
NASA Ames Research Center

Wanlin Pang' Keith Golden
NASA Ames Research Center

Moffett Field, CA 94035
{ wpang, kgo1den)Qemail. arc.nasa. gov

Abstract

This paper presents a graph-based backtrack-
ing algorithm designed to support constraint-
based planning in data production domains.
This algorithm performs backtracking at two
nested levels: the outer- backtracking follow-
ing the structure of the planning graph to se-
lect planner subgoals and actions to achieve
them and the inner-backtracking inside a sub-
problem associated with a selected action to
find action parameter values. We show this al-
gorithm works well in a planner applied t o au-
tomating data production in an ecological fore-
casting system. We also discuss how the idea of
multi-level backtracking may improve efficiency
of solving semi-structured constraint problems.

1 Introduction
Earth-science data processing (ESDP) at NASA is a data
production problem of transforming low-level observa-
tions of the Earth system, such as remote sensing data,
into high-level observations or predictions, such as crop
failure or high fire risk. Given the large number of so-
cially and economically important variables that can be
derived from the data, the complexity of the data pro-
cessing needed to derive them Ayd the maay teraby+es
of data that must be processed each day, there are great
challenges and opportunities in processing the data in a
timely manner, and a need for more effective automation.
Our approach to providing this automation is to cast it
as a planing problem: we represent data-processing op-
erations as planner actions and desired data products as
planner goals, and use a planner to generate data-flow
programs that produce the requested data products.

Many of the recent advances In pianning, such as state-
based heuristic search or reduction to satisfiability prob-
lems, are not readily adapted to ESDP problems, due
to some of its particular features, such as incomplete in-
formation, large and dynamic universes, complex data
types, and complex constraints, just to name a few.

'QSS Group Inc

We take the approach, like many other researchers
[van Beek & Chen, 1999; Lopez & Bacchus, 2003;
Do & Kambhampati, 2001; Smith, Frank, & Jbnsson,
20001, of translating the planning problem into a con-
straint satisfaction problem (CSP). However, since data
processing domains are substantially different from other
planning domains that have been explored, our ap-
proach to translating planning problems to CSPs dif-
fers as well. For example, [Do & Karrbhampati, 20011
use variables to represent goals and domains to repre-
sent available planner actions achieving the goals. Con-
straints are used to encode mutual exclusion relations.
While this is an effective approach for propositional plan-
ning problems, we also need variables to represent ob-
jects and action parameters, and constraints to rep-
resent relations among them. Thus, our encoding is
somewhat more complex, and the CSPs resulting from
our encoding are hard to solve by the search methods
employed in other planners [van Beek & Chen, 1999;
Lopez & Bacchus, 2003; Do & Kambhampati, 2001;
Smith, Frank, & J6nsson, 20001.

We have developed a constraint-based planner, called
DOPPLER, for data processing planner. From a data
processing task, the planner constructs a Zified p lann ing
graph, from which it derives a CSP representation of the
planning problem, and then searches the CSP for a so-
lution. Whereas a conventional planning graph [Blum &
Furst, 19971 is a grounded representation, consisting of
ground actions and propositions, a lifted planning graph
contains variables. This is not only a much more concise
representation than an ordinary planning graph, but it
also is the only practical way that we know to repre-
sent potentially infinite sets of ground actions. Even
though the CSP derived from a lifted planning graph is
difficult to solve by many existing CSP search methods
such as chronological backtracking (BT), forward check-

certain structural properties inherited from the planning
graph. We have developed a search algorithm based the
structure of the planning graph to improve efficiency of
solving the CSP.
In this paper, we report our work on applying

DOPPLER to automating data production problem. We
discuss how the data production problem is cast as a

"'b : n m (K'P) ,a v, nr V I m n F l ; r t - A ; r o r t o A Y Y Y I l V Y u^-.,Y"YI hPrLjiimpicg 1--. --- (QJ), it h a

planning problem which, in turn, is translated into a
CSP, and how the planning graph is used to improve
backtracking in solving the CSP. Section 2 discusses data
processing as a planning task and our planning approach.
Seaion 3 describes a graph-based CSP search algorithm
that outperforms the standard search on problems with
certain structural properties. Section 4 describes the
graph-based planning search algorithm that is the main
contribution of this paper. And Section 5 discusses re-
lated and future work.

2 Planning for Data Processing
Data processing is a task of transforming data products
into other data products. A common sequence of data
processing step is: 1) gather data from multiple sources;
2) convert the data into a common representation; 3)
combine the data and perform other transformations; 4)
feed the data into science models and then run the mod-
els; 5) convert the output of the model into some form
suitable for visualization; 6) repeat some or all these
steps depending on the requirements. To formalize data
processing as a planning problem, we represent data-
processing operations as planner actions, desired .data
products as planner goals, and available data sources as
part of the initial state.

Planning in DOPPLER is a two-stage process. The
first sta e consists of a Graphplan-style reachability
analysisof131urn & f i r s t , 19971 to derive heuristic distance
estimates for the second stage, a constraint-based search.
These stages are not entirely separate, however; con-
straint propagation occurs in both graph-construction
and constraint search stages, and the graph is refined
during the constraint-search phase.

2.1 Lifted Planning Graphs
From the planning problem specification, the planner
incrementally constructs a directed graph, similar to a
planning graph [Blum & f i r s t , 19971, but using a lifted
representation (L e . , containing variables). Arcs in the
graph are analogous to causal links [Penberthy & Weld,
19921. A causal link is triple (CY,, p , c y p) , recording the
decision to use action cy, to support precondition p of
action cyp. However? instead of an arc to record a com-
mitment of support, we use i t to indicate the possibility
that, cy, supports p . The lifted graph contains multiple
ways of supporting p ; the choice of the actual supporter
is left to constraint search. We add an extra term to
the arc for bookkeeping purposes - the condition 7;s

needed in order for as to achieve p . A link then becomes

Given an unsupported precondition p of action CY^, our

p . Because the universe is large and dynamic, iaenti-
fying all possible ground actions that could support p
would be impractical, so instead we use a lifted repre-
sentation, identifying all action schenias that could pro-
vide support. Given an action schema C Y , we determine
whether it supports p by regressang p through CY,. The
result of regression is the formula rp*. If rFs =I, then

(as 7 7 ; s , P, a,).
C_-L I I L ~ ~ , L r q b d b k is to idelltil’y di the actions that couid support

CY, does not support p . Initial graph construction ter-
minates when all preconditions have support or (more
likely) a potential loop is detected.

2.2 h o r n Planning to Constraints
A constraint satisfaction problem (CSP) representing the
search space is incrementally built during the planning
graph construction. The CSP contains: 1) boolean vari-
ables for all arcs, nodes and conditions; 2) variables for
all parameters, input and output variables and function
values; 3) for every condition in the graph, a constraint
specifying when that condition holds (for conditions sup-
ported by arcs, this is just the XOR of the arc variables);
4) for conjunctive and disjunctive expressions, the con-
straint is the respective conjunction or disjunction of
the boolean variables corresponding to appropriate sub-
expressions; 5) for every arc in the graph, constraints
specifying the conditions under which the supported flu-
ents will be achieved (i.e., yp” 3 p , where rp” is the
precondition of a: needed to achieve p) ; 6) user-specified
constraints; and 7) constraints representing structured
objects.

2.3 Planning Search
Guided by heuristic distance estimates extracted from
the planning graph, the planner first selects planner sub-
goals to achieve and actions to achieve them, which form
a lifted plan. After the subgoal and action selection,
the the CSP solver finds values for variables representing
planner action parameters. This is necessary to make ac-
tions executable. During the search, propagation is per-
formed whenever a value is assigned to a variable. The
search is an iterative process involving possible back-
tracks; that is, if there are no valid parameters for a cho-
sen action, the planner has to search for another plan; if
it is impossible to extract a plan from the current plan-
ning graph, the planning graph has to be extended, or
the planner admits the failure of finding a plan.

2.4 A Simplified Example
.A typical data processing task consists of gathering data
files, transforming them, feeding them into a science
model (e.g., a fire-risk model), and producing a find data
file so that a decision maker can assess the fire risk of a
particular region. For simplicity, we ignore much of the
complexity of the data processing domain, and focus on
one sub-problem: spatial aggregation. So a simplified
task becomes to take some regions from thousands of
available regions and compose them to create a mosaic
that covers a specified region.

Specifically, a region is a pair of points (d, IT) where
ui is the upper-ieft corner and ir the lower-right corner.
A point is a pair of coordinates (z, y). Normally z and y
would be longitude and latitude, but as’ a further simpli-
fication, we will assume both x and y are non-negative
integers. Further, we assume there are only 3 actions
the planner may take, compose two regions horizontally
(c o m p 2 h) and vertically (c o ~ n p & v) , and compose 4 re-
gions (c o m p d) as in Figure 1.

Figure 1: The planner actions

Figure 2: A compact search space: objects in a dot-
ted rectangles are inputs to an action; an object divided
by dashed lines is a composed object; single objects are
amilable in the initial state.

A problem instance we consider here consists of some
unit squares; that is, squares of (ul, IT) where u1.x + 1 =
I T . X and uZ.ij+ 1 = ~ T . Y . For exLxple, ((G,!l),(1,2), or
(2,3), (3,4)). The goal is to compose a region covering

The planning graph created by the planner is in
Figure 2. At a high level, the planner finds a lifted plan
by selecting subgoals and actions, shown in Figure 2 as a
path from the initial state to the goal with dark arrows.
This plan may not be executable because actions are not
grounded. For example, the action comp.4 is selected
because it has support from the initiai state and ic
supports the action compZh, but its parameters are not
determined yet. The constraint solver then finds values
for action parameters, which is shown in Figure 2 as
groups of shaded rectangles.

((0 , o>, (3,2)).

It turns out that finding a lifted plan is a relatively
easy task because it is a problem of finding a consistent

assignment to a small number of variables in a very big
constraint problem; whereas finding values for action pa-
rameters is a difficult CSP search problem. To address
the issue, we developed a graph-based search algorithm,
which is discussed in the rest of the paper.

3 Graph-Based Backtracking
A constraint satisfaction problem (CSP) consists of vari-
ables, domains that contain possible values the variables
may take, and constraints that limit the values the vari-
able can take simultaneously. In finite-domain CSPs
(that is, every variable has a finite domain), a constraint
over a variable subset can be represented extensionally
as a subset of the Cartesian product of the domains of
variables in the constraint. However, in the data pro-
cessing domain we are interested in, the CSPs obtained
from the planning problem contain variables that usually
have infinite domains [Golden & Frank, 20021. An infi-
nite domain is represented as an an interval (for numeric
types), regular expression (for string types) [Golden &
Pang, 20031, or symbolic set (for object types). Because
of infinite domains, the constraints are not represented
extensionally as relations, but as procedures [Jbnsson,
19961. A procedural constraint consists of a set of vari-
ables (the scope) and a procedure (i.e., an execute0
method) that can be executed to enforce the constraint
by eliminating inconsistent values from the domains of
variables in the scope. If execution of a constraint results
in an empty variable domain, execute0 returns failure,
indicating the violation of the constraint.

How-
ever, many practical problems possess certain proper-
ties that allow tractable solutions. A class of structure-
based CSP-solving algorithms, called decomposition al-
gorithms, has been developed [Gottlob, 2000; Gyssens,
Jeavons, & Cohen, 1994; Dechter, 1990; Dechter & Pearl,
19891. Decomposition algorithms attempt to find solu-
tions by decomposing a CSP into several simply con-
nected sils-CSPs based oii the under!ying censtr~int
graph and then solving them separately. Once a CSP
is decomposed into a set of sub-CSPs, all solutions for
each sub-CSP aze found. Then a new CSP is formed
where the original variable set in each sub-CSP is taken
as a singleton variable. Usually the technique aims at
decomposing a CSP into sub-CSPs such that the num-
ber of variables in the largest sub-CSP is minimal and
the newly formed CSP has a tree-structured constraint
graph. In this way, the time and space complexity of
finding ail soiutions for each sub-CSP is bouxded, and
the newly formed CSP has backtrack-free solutions. The
complexity of a decomposition algorithm is exponential
in the size of the largest SU'U-CST. Tlie class sf CSPs ih&
can be decomposed into sub-CSPs such that their sizes
are bounded by a fixed number IC is tractable and can be
solved by decomposition in polynomial time. This is the
strength of CSP decomposition. A fatal weakness of CSP
decomposition, however, is that the decomposition is not
applicable to solving a CSP that is not decomposable,
that is, its decomposition is itself. A secondary draw-

Solving a CSP, in general, is NP-complete.

back of CSP decomposition is that, even if the CSP is
decomposable, finding all solutions for all the sub-CSPs
is unnecessary and inefficient.

Graph based backtracking (GBT) [Pang A'L Goodwin,
20031 was developed t o address these issues. The idea of
the GBT algorithm is to decompose the constraint graph
into a tree of subgraphs (for example, non-separable corn-
ponents) , and then search for a consistent assignment
to variables involved in a subgraph and extend it to its
children. At a subgraph where no consistent assignment
can be found, GBT backtracks to the parent, reinstan-
tiates variables in that subgraph, and starts from there.
Within a subgraph, GBT searches for a consistent as-
signment to the variables in the subgraph in a way sim-
ilar to standard backtracking, which may involve back-
tracks but limited to within the subgraph. The algo-
rithm stops when a solution is found or when it proves
that no solution exists. The detailed GBT algorithm 4.1 Algorithms
can be found in [Pang & Goodwin, 20031. h a simple

optimizing the constraint problem in terms of its size
and structural properties.

As an alternative, we decompose the CSP into sub-
CsPs based on the planning graph instead of the con-
straint graph, each sub-CSP containing a group of vari-
ables that are relevant to a node in the planning graph
representing a lifted action. In most of the cases, the
sub-CSPs may not form a tree, which makes the tradi-
tional csp decomposition methods inapplicable. How-
ever, the GBT algorithm can be adapted easily: the
outer-backtrackirig is performed to select the planner
subgods and actions, the inner-backtracking to find val-
ues for action parameters by solving the associated sub-
CSP. Even though the sub-CSPs do not form a tree, it is
not a requirement for the graph based search approach
but a preferred property.

way, the GBT algorithm performs backtracking at two
nested levels: the inner-backtracking inside a subgraph
and outer-backtracking following the subgraph tree ob-

The graPh-based Planning search algorithm Outlined
in 1 and 2. At a high level, the planner per-
forms Best-FirSt 'earch to 'elect the Planner subgoals

tained from the graph decomposition.
The GBT algorithm shares the merits of csp decem-

position and OvercOmeS it. webesses. As &h the de-
composition method, GBT decomposes the given csp
into sub-CSPs based on the underlying constraint graph
 decomposition^ Unlike the decomposition how-
ever, GBT only tries to find one solution for a chosen
 sub-^^^, which is not separated from other sub-CSPs,
and then tries to extend it to other sub-CSPs, If ,.he un-

plexity of GBT algorithm is bounded by the size of the
largest sub-CSP; in the that the constraint graph
is not decomposable, GBT degenerates to a standard
backtracking.

The GBT algorithm, as with other decompos~t~on al-

and actions achieving the subgoals. Once an action is
chosen for a subgoal, it collects a subset of variables rel-
evant to the action and calls a constraint solver SBT to
find a consistent assignment for the collected variables.
SBT performs a local backtracking to search for a so-
lution to the sub-problem that is also consistent with
solutions to the sub-problems preceding the current one.
If SBT fails, the high-level search takes control, tries
another action for the current selected subgoal or back-

selection of subgoals and actions, SBT is called again
to find values for certain variables that may have been
missed during the previous search.

Both algorithms interleave search with propagation,
which is a process of continuously executing constraints

derlying constraint graph can be decomposed, the corn- tracks to a previously subgoal. At the Of

gorithms, depends on the underlying constraint graph
representation and its decomposition. For details on

as long as variable domains change. The propagation
performs a partial generalized arc-consistency (GAC)l

graph representation and decomposition see [Gottlob,
2oool. F~~ the planning problem at hand, we adapt GBT
to utilize the planning graph structure for search heuris-
tics.

4 Graph-Based Planning Search
Intuitively, the CSP derived from the planning graph is
well structured due to the fact: i) the variables relevant
to each planner action along with the subgoal it sup-
ports and the conditions enabling the action are tightly
connected; ii) the constraints between variables of dif-
ferent actions are relatively sparse. Ideally, the CSP can
be decomposed based on the constraint graph decom-
position into sub-CSPs, each corresponding to a group
of variables associated with a planner action. However,
by experiments with a few graph decomposition meth-
ods, we haven't been able to decompose the constraint
graph into a tree of subgraphs in a satisfactory way. It
is still an on-going research effort to evaluate the process
of translating the planning problem to a CSP aiming at

[Bessie= 8~ Ch, 1997; Katsirelos & Bacchus, 20011, and
it is an essential part of solving the constraint problem,
not only because i t reduces the search space by eliminat-
ing some inconsistent values, but also because the con-
straint problem at hand contains variables with infinite
domains which cannot be enumerated by search. If exe-
cuting a constraint fails, propagate 0 returns failure,
which implies that the current value assignment to vari-
ables is inconsistent. Because the propagation is not lim-
ited to a sub-problem even if i t is invoked by the SBT
solving the sub-problem, i t ensures the solutions to local
sub-problems are globally consistent.

Comparing to the GBT algorithm in Section 3, the
high-level BFS corresponds to the outer-backtracking;
it backtracks when the selected best subgoal or action
achieving a subgoal based on the planning heuristics is
not feasible; that is, either the immediate propagation

'kve call it partial GAC for two reasons: 1) not every con-
straint procedure enforces the GAC; and 2) not every con-
straint is executed in the propagation.

fails, or the subsequent SBT search fails. The lower-
level SBT is standard backtracking plus propagation for
solving a specified sub-problem. Whereas the GBT al-
gorithm and other graph-based decomposition methods
require that the CSPs to be solved can be decomposed
into tree-structured sub-problems, the multi-level back-
tracking algorithm presented here follows the structures
of variable clusters, which may or may not form a tree,
without an explicit decomposition. Such a multi-level
backtracking strategy is particularly well-suited for semi-
structured problems; though, more empirical studies are
needed.

Algorithm 1 GBFS
Given a set of subgoals in the lifted planning graph G
and a family of action sets A = { A (g) l g E G}, each A(g)
is a set of actions achieving subgoal g. Let G’ G be a
set of active subgoals to be achieved (initially, the goals
in the goal state), P = (X , D , C) the CSP derived from
the lifted planning graph, and X’ a subset of searchable
variables:

GBFS(G, A , P, G’)
1. while (G’ # 0) do

(a) g t a goal removed from G‘
(b) for each action a E A(g)

i. if (propagate(P, {a}) returns failure)
continue for the next action

ii. X’ t variables relevant to u
iii. while (SBT(P,X’) returns success) do
A. G, t conditions of a
B. add G, to G’ and sort G‘
C. if (GBFS(G, A, P, G’) returns success)

return SBT(P, X)
iv. continue f o r the next action

(c) return failure
2. return success

Algorithm 2 SBT

searchable variables:

SBT(P, X‘)

, Given a CSP P = (X. D , C), and let X’ C X be a set of

1. if (X’ = 0) return success
2. select 5% E X
3. for each value v E d(xl)

(a) zt t- v
(b) if (propagate (P , Cx,I> returns success)

i. update X‘
ii. if (sBT(P, X’j returns success)

return success
4. return failure

4.2 The Example Again

We take a look at the simplified example again and de-
scribe how the graph-based search algorithm works.

The task is to make a region covering ((O , O) , (3 ,2)) ,
which consists of regions B1, Bz, ..., Bs, all available from
the initial state. At the beginning of the planning
search, the active goal set G’ contains only the top-
level goal of making ((0 , 0), (3 , 2)) . Ignoring the search
heuristics, we assume tha t the planner chooses the action
compth, which composes two regions horizontally. These
two regions are the parameters of the action, which are
not determined initially. The inner-backtracking solver
SBT is created with these parameters and it is called
to find values for them. It quickly finds two regions,
((O , O) , (2 , 2)) and ((2 , 0) , (3, a)) , for output parameters
of action compth, and it also remembers its current sta-
tus so that when it backtracks, it can find the next so-
lution (the regions ((0,0),(1,2)) and ((1,0), (3 ,2)) , see
Figure 2) . The planner adds two subgoals, constructing
the regions ((O , O) , (2 ,2)) and ((2,0), (3 , 2)) , to the active
goals, and then continues recursively with the next best
goal, which is one of the newly added two subgoals.

4.3 TOPS Application

M7e have applied the OoPPLEE planner to the Ter-
restrial Observation and Prediction System (TOPS,
http://ecocast.arc.nasa.gov) [Nemani et al., 20021, an
ecological forecasting system that assimilates data from
Earth-orbiting satellites and ground weather stations to
model and forecast conditions on the surface, such as soil
moisture, vegetation growth and plant stress. The plan-
ner identifies the appropriate input files and sequences
of operations needed to satisfy a data request, executes
those operations on a remote TOPS server, and displays
the results, quickly and reliably.

We have developed A TOPS planning domain, which
specifies the data operations and data object types
in TGPS. Daca operar;ions include I uririirlg siliidation-
based models, reprojection, scaling, and construction of
color composites, mosaics, and animations, etc. For ob-
ject types in TOPS, Figure 3 shows the input and output
objects to a TOPS model. To create a planning problem
instance (i.e., a TOPS task), the user needs only to spec-
ify the planner goal, which is a description of a desired
data product. A sample TOPS task would be something

c

Figure 3: Structured inputs and outputs to a TOPS
model

like “display Gross Primary Production (GPP) for con-
tinental US on May 5th, 2004”.

The motivation of developing the graph based plan-
ning search is to speed up the search process so that the
planner can produce the requested data product within
a time limit acceptable to the user. Even though it is dif-
ficult for us to compare DOPPLER planner with publicly
available planners, which cannot handle data-processing
problem, we have compared DOPPLER to itself by turn-
ing on or off the inner-backtracking SBT. Without inner-
backtracking SBT, for most of the TOPS tasks, it usu-
ally takes a few tries with different variable ordering
hwrist>ics to solve a problem; sometimes it fails within
a specified time limit (e.g., 5 minutes). With inner-
backtracking SBT turned on, the same TOPS tasks can
be solved quickly without trying the additional variable
ordering heuristics. However, we are currently conduct-
ing experiments on more TOPS tasks and artificial prob-
lems like the one in Section 2.4.

5 Conclusions
We have discussed the data production problem and how
we reduce it to planning and solve the planning problem
with a constraint search and propagation approach. A
key element of our approach is the lifted planning graph,
which we use as a basis for our CSP encoding, and use
further to guide the planning and constraint search. The
graph-based backtracking algorithm presented here has
proved to be effective in our planner; it is also a gen-
eral CSP solver that we intend to evaluate further on
structured or semi-structured problems and to compare
to other search and decomposition methods.

There has been little work in planner-based automa-
tion of data production. ‘lwo notable exceptions are
Collage [Lansky, 19981 and MVP [Chien et al., 19971.
Both of these planners were designed to provide assis-
tance with data analysis tasks, in which a human was in
the loop, directing the planner. In contrast, our planner
does not require human interaction, which is appropriate
for domains like TOPS, in which data production must
be entirely automated; there is simply too much data

-

for human interaction to be practical. Pegasus [Blythe
et al., 20031 is a workflow planning system for compu-
tation grids, a problem similar to ours, though their fo-
cus is on mapping pre-specified workflows onto a specific
grid environment, whereas our focus is on generating the
workflows.

References
[Bessiere & Ch, 19971 Bessiere, C., and Ch, J. 1997.

Arc-consistency for general constraint networks: Pre-
liminary results. In Proceedrnys of IJCAI-97, 398-404.

1997. lBlum & Furst. 19971 Blum. A . , and Furst, M. , ,
Fast planning through planning graph analysis. AIJ
90(1-2):281-300.

[Blythe et al., 20031 Blythe, J.; Deelman, E.; Gil, Y.;
Kesselman, C.; Agarwal, A,; Mehta, G.; and Vahi,
K. 2003. The role of planning in grid computing.
In Proc. 13th Intl. Conf. on Automated Planning and
Scheduling (ICA PS).

[Chien et al., 19971 Chien, S.; Fisher, F.; LO, E.;
Mortensen, H.; and Greeley, R. 1997. Using artificial
intelligence planning to automate science data analy-
sis for large image database. In Proc. 1997 Conference
on Knowledge Discovery and Data Mining.

[Dechter & Pearl, 19891 Dechter, R., and Pearl, J. 1989.
Tree clustering for constraint networks. Artificial In-
telligence 38:353-366.

[Dechter, 19901 Dechter, R.. 1990. Enhancement, schemes
for constraint processing: backjumping, learning, and
cutset, decomposition. Artaficial Intelligence 41:273-
312.

[Do & Kambhampati, 2001] Do, M., and Kambham-
pati, S. 2001. Planning as constraint satisfaction:
Solving the planning graph by compiling it into CSP.
Artificial Intelligence 132: 15 1-1 82.

[Golden & Frank, 20021 Golden, K., and Frank, J. 2002.
Universal quantification in a constraint-based planner.
In AIPSO2.

[Golden & Pang, 20031 Golden, K., and Pang, W. 2003.
Constraint reasoning over strings. In Proceedings of
the 9th International Conference on the Principles and
Practices of Constraint Programming.

[Gottlob, 20001 Gottlob, G. 2000. A comparison of
structural CSP decomposition methods. Artificial In-
telligence 124:243-282.

[Gyssens, Jeavons, & Cohen, 19941 Gyssens, M.; Jeav-
ons, P.; and Cohen, D. 1994. Decomposing constraint
satisfaction problems using database techniques. Ar-
tificial Intelligence 66: 57-89.

[J6nsson, 199G] J6nsson, A . 1996. Procedural Reasoning
in Constraint Satisfaction. P1i.D. Dissertation, S t a r -
ford University.

IKatsirelos & Bacchus, 20011 Katsirelos, G., and Bac-
chus, F. 2001. GAC on conjiirictions of cowtrairits.
In CP-2001.

c

[Lansky, 19981 Lansky, A . 1998. Localized planning with
action-based constraints. Artificial Intelligence 98(1-

[Lopez & Bacchus, 20031 Lopez, A., and Bacchus, F.
2003. Generalizing graphplan by formulating planning
as a CSP. In Proceedings of IJCAI-2003.

[Nemani e t al., 20021 Nemani, R.; Votava, P.; Roads, J.;
White, M.; Thornton, P.; and Coughlan, J. 2002.
Terrestrial observation and predition system: Integra-
tion of satellite and surface weather observations with
ecosystem models. In Proceedings of the 2002 Inter-
national Geoscience and Remote Sensing Symposium
(IGARSS).

[Pang & Goodwin, 20031 Pang, W., and Goodwin, S. D.
2003. A graph based backtracking algorithm for gen-
eral CSPs. In Proceedings of 6th Canadian Conference
on Artificial Intelligence (CAI-2003), 114-128.

[Penberthy & Weld, 19921 Penberthy, J., and Weld, D.
1992. UCPOP: -4 sound, complete, partial order plan-
ner for ADL. In Proc. 3rd Int. Conf. Principles of
Knowledge Representation and Reasoning, 103-114.

[Smith, Frmk, & JBnsson, 20001 Smith, D.; Frank, J.;
and Jonssoq -4. 2000. Bridging the gap between plan-
ning and scheduling. Knowledge Engineering Review

[van Beek & Chen, 19991 van Beek, P., and Chen, X.
1999. CPlan: A constraint programming approach
to planning. In Proceedings of AAAI-99.

2) A9-136.

15 (1) :61-94.

